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Hayashi has predicted that the early contracting sun should be highly luminous 
and fully convective, if one makes a correct choice of the photospheric boundary 
condition in constructing solar models in the contracting stages. We have con- 
structed a sequence of models which fully confirm his predictions. The maximum 
radius of the protosun consistent with gravitational stability is 57R,; this has a 
luminosity of about 450 times that of the sun. As the protosun shrinks its stays fully 
Convective until a radius of less than 3R, is reached; the luminosity continues to 
decrease until a radius of 1.7R, is reached. The sun requires about 2 million years 
to contract onto the main sequence, but this number is very uncertain because of 
the unsatisfactory state of convection theories. If the primitive solar material has 
the terrestrial ratio of deuterium to hydrogen, then a further 3 x 10" years is 
required to burn the deuterium. These numbers are very much less than previous \ studies had indicated. The degree of lithium burning in the outer convection zone 
of the sun is highly uncertain owing also to the unsatisfactory state of convection 
theories. 

INTRODUCTION 
The early contracting phase of solar 

evolution is of great interest to any theory 
of formation of the solar system (scc for 
example Hoyle, 1960; Cameron, 1962a, 
1962b). There is a tendency on the part 
of scientists attempting to reconstruct the  
history of the planets and meteorites to 
assume that  the sun had its present prop- 
erties, or at least that  its luminosity was 
not greatly different from the present one, 
during the earliest history of the solar sys- 
tem. We shall see in the course of this work 
that such an assumption is questionable. 

The first detailed study of an evolution- 
a r y  sequence of contracting solar models 
was carried out by Henyey, Lelevier, and 
Levee (1955). This work indicated that  
the sun gradually increased in luminosity 
as i t  contracted. When nuclear energy gen- 
eration sets in and halts the contraction 
near the main sequence, a moderate decline 
in luminosity takes place. The solar models 
of Henyey e t  al. did not make provision 
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for the possibility of an outer convection 
zone. 

A more recent study has been carried out 
by Brownlee and Cox (1961). These 
authors improved the calculations of Hen- 
yey e t  al. by using improved opacities for 
the solar interior, by incorporating an 
outer convection zone in the models, and 
by putting in all the sources of nuclear 
energy generation. However, they used 
only a crude surface boundary condition. 
The evolutionary paths followed by their 
models have a general resemblance to  those 
of Henyey et  al. . 

Recently Hayashi (1962) has pointed 
out that  the surface boundary conditions 
in the more extended models of Henyey 
e t  al. and of Brownlee and Cox are not 
correct. The density of matter in the photo- 
spheric layers of such models is much too 
small. In  the photosphere of the sun the 
opacity of the material must be such that 
the photospheric layer lies a t  about one 
optical depth in the solar atmosphere. Thus 

rn 
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Hayashi concluded that  a readjustment of 
the contracting solar models would be 
necessary in which the density of the solar 
photospheric layer would bc greatly 
increaPed. 

Such a readjustment is possible only if 
there is a complete reorganization of the 
density-radius relation throughout the 
model. The models of Brownlce and Cox 
had rather shallow surface convection 
zones; an increase in surface density would 
require that  the surface convection zone 

terior, possibly all the way to the center. 
Since convection is an exceedingly efficient 
mechanism of energy transport, the lumi- 
nosity of the model would thus depend 
entirely upon the rate a t  which energy 
could be radiated away from the surface. 
Now, the opacity of solar material in- 
creases as the temperature increases, a t  
least in the range 3 x lo1 to 10' OK. Thus 
a high surface temperature also assists the 
model to attain a satisfactory photospheric 
boundary condition. However, i t  should be 
noted that  this leads to  the expectation 
that  the solar luminosity was much higher 
than a t  present during the contraction 
phase. 

The present work was undertaken to 
investigate these predictions of Hayashi. 
The results reported here are preliminary, 
in the sense that  isolated solar models have 
been calculated rather than evolutionary 
sequences of models. No nuclear energy 
generation has been included, so that the 
luminosity derives entirely from the release 
of gravitational potential energy. It was 
necessary to make an assumption about 
the distribution of this energy source. All 
models were assumed to be in homologous 
contraction, so that  the relative structure 
would not change in an infinitesimal con- 
traction. With assumptions of this sort i t  

variations in interesting physical param- 
eters entering into the models. 

THE BASIC EQUATIONS OF STELLAR 
STRUCTURE 

Stellar models are calculated on the 
assumption that  the star is spherically 
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. is easier to explore the consequences of 

symmetric and in hydrostatic equilibrium. 
The equations that must be satisfied by 
this structure are: 

dM(r)/dr = 4 m 2 p  (1) 

dL(r)/dr = b 2 p r  (3) 

dP(r)/dr = -G[M(r) /r2]p (2) 

For radiative equilibrium: 

( 4 4  dT _ -  3 X P  1 
dr 4ac T3 4nr2 

In  the above equations, P is the total 
pressure (gas plus radiation), T is the 
temperature, M ( r )  is the mass within a 
sphere of radius r, L ( r )  is energy crossing 
the surface of a sphere of radius r per sec- 
ond, z is the energy produced per gram per 
second, x is the absorption coefficient 
(cm'/gm), and r is the effective ratio of 
the specific heats. It differs from y = 
cp/cv through the inclusion of the effects 
of dissociation and ionization of the gas, 
and i t  varies throughout the convection 
zone of the stars. The assumption r = con- 
stant = 5/3 corresponds to the assumption 
that the stellar material is wholly neutral 
or completely ionized. 

Equations (1-4) are more easily in- 
tegrated in electronic computers if they are 
expressed in logarithmic form. Neither the 
pressure nor the mass is very suitable to  
take as an independent variable all the 
way from surface to the center. Near the 
photosphere, where the change in pressure 
is rapid compared to the change in mass, 
and the energy transport by convection 
should be treated in the proper way, i t  is 
better to  use pressure as an independent 
variable. Then Eqs. ( 1 4 )  can be written 
in logarithmic form with pressure as an 
independent variable: 
d l n  r dr 
m = z  

= - exp (r + P - 1nG - M - p) 

d l n M  - dM 
d l n P  dP 
- _ -  
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+ 4r + P - 2M 

Radiative temperature gradient: 

d l n  T dT 

+ l n x  + L + P - M - 4T 

The symbols indicate that r = In r, M = 
In M ,  etc. The temperature gradient in case 
of convection will be discussed later. 

Even though the above equations can be 
used all the way from surface to the center, 
in cases where the change in mass becomes 
very large compared to the change in pres- 
sure, very small steps are needed. Then it 
is better to take mass as an independent 
variable. Our basic equations become : 

dr/dM 

dP/dM 

dL/dM = exp (E + M - L), 
and 

dT/dM = - exp [In (3/64ac?r2) + L + M 
provided 

= exp (M - 3r - e - In h), 

= - exp [In (6/4?r) + 2M - P - 4r], 

- 4T - 4r + In x], 

r - i d ~ .  l%l< IF ;iiC?I’ 
otherwise 

dT r - 1 dP 
~ = --. 
dM r d~ 

It should be noted that  the second form 
for the equation of energy transport is 
needed where the radiative temperature 
gradient exceeds the adiabatic temperature 
gradient. Because the logarithmic mass is 
used as an independent variable only deep 
in the stellar interior, we make here the 
assumption that  the full energy flux is car- 

ried by convection and that the tempera- 
ture gradient is the adiabatic one. This 
assumption is good in the deep interior but 
fails badly near the stellar surface where 
thc logarithmic pressure is used as an inde- 
pendent variable. 

THE GRAVITATIONAL ENERGY SOURCE 
I n  this study of early solar evolution, 

the energy generation was assumed to be 
entirely due to release of the gravitational 
potential energy of the contracting solar 
mass. 

’ 

The luminosity is 

L = Jo” krzpe(r)dr 

where is energy released per gram of 
material per second due to contraction of 
the star. 

dL c(r) = - 
4dpdr  

If U indicates the internal energy per grain 
of material and V the specific volume, then 
a t  each point in the star 

av 
- c(r) - P - aU 

at at 
- =  

The change of internal encrgy is balanced 
by the energy loss and the work done by 
the pressure. The internal energy per gram 
of material a t  a point inside the star is 

U = c,T(r) 
Assuming the ideal gas law governs the 
interior of the star, 

u=--.--- 1 p(r)  
(r - 1) P(r) ’ 

where r is the ratio of specific heats a t  the 
point considered. If we replace V by its 
reciprocal p, then: 

or 

p a p  (5) 1 I ar --E(r) = ~ - - - ~ - -. (r - 1) dt  (r - 1) p2 at 

If i t  is assumed that  the star is contract- 
ing homologously, then the rate of change 
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with time of pressure and density a t  every 
point is completely determined by the rate 
of change in the radius of the star in such 
a way that  

1 a P  1 dR 
4~ at R dt 3 p  at B dt 
Inserting these values in Eq. ( 5 ) :  

and - - = - - -  1 dR - --- --- 1 ap 

3r - 4 P(r> ( 1 dR) e(r )  =-- --- . r - 1 p( r )  R dt 

Hence 

The rate of contraction may be written 

It may thus be seen that  we are express- 
ing the reciprocal time for the contraction 
rate as a fraction of the ratio of the lumi- 
nosity to a measure of the gravitational 
potential energy. The quantity J may be 
called the contraction parameter; i t  is one 
of the fundamental parameters that  had to  
be adjusted in order to obtain consistent 
solar models. It is by definition 

GM2 J =  
&R /b" [(3r - 4)/(r - i)IP(r)rvr 

It may easily be seen that  the contraction 
parameter should not vary rapidly from one 
solar model t o  a later one. If the sun were 
a polytrope of index n with a constant ratio 
of specific heats throughout, then we would 
have 

OPACITIES 
The computer programming code for 

stellar absorption coefficients and opacities 
(Cox, 1961), which was prepared a t  the 
Los Alamos Scientific Laboratory, was 
kindly made available for the present 
opacity calculations. The program was run 
on an IBM 7090 a t  the Institute for Space 
Studies for a temperature range of 2 x lo3 

range of lo-'* through lo3 gm/cm3, with 
a mixture containing hydrogen, helium, and 
heavy elements having mass fractions 
0.602, 0.376, and 0.022, respectively. The 
code requires use of the abundance of each 
element separately. 

The code could be run for a mixture of 
not more than 11 elements. A modified ver- 
sion of an abundance table (Cameron, 
1959) was adopted and the individual ele- 
ments were combined to give the repre- 
sentative abundances shown in Table I. 
The rather rare element K was retained 
because of its importance in supplying 
electrons for the formation of H- at  low 
temperatures. 

The processes which contribute to  the 
opacity calculation in the code are bound- 
bound absorption, bound-free absorption, 
free-free absorption, electron scattering, 
negative ion absorption, and electron con- 
duction. 

The bound-bound absorption by many 
lines close together (blanketing) has been 
important in stellar atmospheres and in- 
teriors. Its influence on the opacity depends 
on the position of the line in the emission 
spectrum and, to  a lesser degree, the shape 
of the line. In  stellar atmospheres Stark 
broadening of hydrogen lines is dominant, 

"I( +L ..-.__ L E i n -  OT,- --J uiiiuugii /* iu n miu z deiisiiji 

TABLE I 
ADOPTED ABIJNDANCES OF ELEMENTS (SILICON = 106) 

Element Abundance Element Abundance Element Abundance 

H 3 . 2  X 1Olo 0 2.9044 X 10' K 3 . 3  x 10' 
He 5 . 0  x 109 Ne 1.7 x 107 Ca 1.99 x 106 
C 1 .66  x 107 A1 9 . 5  x 104 Fe 2.629 X lo6 
N 3 . 0  x 104 Si 2.303 X lo6 
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but in the deep interiors of the star col- 
lisional broadening is the most important 
below lo6 O K ;  lines can increase the opnc- 
ity by a factor of two or more. At the 
temperatures prevailing in the interiorb of 
stars, the increase is about 10% of the 
total opacity. 

The bound-free absorption depends on 
the equilibrium number of electrons which 
are bound in the various atomic states. 
When the ionization of one element is com- 
pleted, no more bound-free absorption due 
to that element can occur. In  the mixture 
under consideration, the bound-free ab- 
sorption by the K shell electrons of iron 
keeps the opacity moderately large up to 
several million degrees. 

At temperatures around 10; OK, most 
elements in astrophysical mixtures have 
been ionized, and free-free absorption in 
the field of hydrogen ions becomes very 
important. The nuclear charge is shielded 

by free electrons and ions resulting in a 
decrease in the free-free absorption. But 
these effects are about 10% or less at mod- 
erate densities and temperatures around 
IOG OK. When electrons arc degcncrate, 
electron conduction also contributes to the 
transport of energy. But these cases are 
not important in the temperature and den- 
sity ranges we are interested in. 

The only negative ion of importance in 
astrophysics is that  of hydrogen. At  the 
low temperatures such as occur a t  the 
outer layer of stars, H- ions formed from 
the capture of electrons from the metals 
keep the opacity still quite high. Both H- 
bound-free and free-free absorptions con- 
tribute to the opacity. Actually H- free- 
free absorption, which depends on the 
number of free electrons, is only important 
a t  wavelengths near or longer than the H- 
bound-free edge. 

Molecular absorption and Rayleigh 

IO0 

10-1 
I io3 io4 105 IO6 io7 IO6 

TEMPERATURE (OK) 

FIG. 1.' Opacities for lines of indicated density (gm/cm3) calculated as a function of temperature 

- ~- - _ _  
from the Los Alamos Opacity Code. 

- -  
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scattering have not been included in the 
opacity calculation. Unfortunately very 
little is known about the absorption due to 
molecules that form in stellar atmospheres. 
Blanketing effects due to overlapping 
molecular bands should be very important 
a t  these low temperatures. Therefore, the 
opacities a t  low temperatures are very 

included in Vitense's opacity calculations 
(Bohm-Vitense, 1951), is usually not very 
important. Only a t  very low temperatures 
auu IWl I U W  IllCliill l i W l l t C l l l i D  1111glllJ l b  ue- 
come important. 

The calculated opacities require correc- 
tions due to the absorption by lines. A. N. 
Cox gives these corrections as a graph 
(private communication) and the applica- 
tion of these corrections increases the 
opacities by a factor of 1.1 to  about 3.0 
depending on the density and temperature 
combination. 

Figure 1 shows the over-all run of opaci- 

* uncertain. Rayleigh scattering, which is 

-..A $,, I,.--- - - - A - 1  -,.- ,.-.A- - - : - 1 . L  'L L -  

ties calculated for different densities as a 
function of temperature. Figure 2 shows in 
more detail the opacities at  low tempera- 
tures. 

These opacities have been stored in the 
machine as a two-dimensional table cor- 
responding to discrete values of In T and 
In p. For a given In T and In p combination 
the corresponding opacity (In x) was ob- 
tained by linear interpolation. 

EQUATION OF STATE 
m. i n e  totai pressure is given by the sum of 

gas pressure plus radiation pressure, 

? = ?, 4- P,, 
Po = (1 + 2 ) ( N k T / V )  
P ,  = $aT3 

where N is the number of atoms per unit 
volume, V is the specific volume, and a is 
the radiation constant; 5 is the mean degree 
ionization and dissociation defined by 

I 

TEMPERATURE ( O K )  

FIG. 2. Details of the opacities at low temperatures. The lines refer to the indicated densities. 
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5 = 2 v t q i  - (x4/2)v1 
where are the degrees of ionization, x4 is 
the fraction of hydrogen nuclei in molecu- 
lar state, and vi are the abundances by 
number of various elements under consid- 
eration, with 2 v i  = 1. The partial electron 
pressure P, and the partial pressure of 
atomic hydrogen PI, are given by 

The density p is related to P and T 
through the equation of state 

Po = (WdpT;  
with the above definition for the mean 
molecular weight p me have 

KO 
K = 

with p,, = 4/ (4X + I;) , where X and Y are 
the mass fractions of hydrogen and helium, 
respectively. 

As a chemical composition we use 0.602 
for the mass fraction of hydrogen, 0.376 
for helium, and 0.022 for the heavy ele- 
ments. Hydrogen and helium have each 
been considered in three states: H2,  H, H' 
and He, He+, He2+. The dissociation equi- 
librium constant for molecular hydrogen is 
given by a polynomial of 0 (= 5040/T) 
which is used in the calculations of Vardya 
(1961). 

p 2 H  log10 K(H2) = log - = 12.533505 
P H S  

- 4.9251644 e + 0.056191273 
- 0.0032687661 e 3  

Here P,, denotes the partial pressure of 
atomic hydrogen, and P,z that  of molecu- 
lar hydrogen. The amount of molecular 
hydrogen is only calculated in the tem- 
perature range 1000OK t o  12000OK. 

The degree of ionization for each element 
is obtained from the Saha equation; 

where xi is the ionization potential and IC 
is the Boltzman constant. At  each integra- 
tion step the program computes the degree 
of ionization and dissociation. 

CONVECTION 
The existence of an outer convection zone 

greatly affects the luminosity and radius 
of late type stars. Theie two quantities are 
the boundary conditions for the interior 
models of the stars. Therefore, convection 
should be treated as accurately as possible. 
We use Prandtl's mixing length theory a:: 
applied by E. Bohm-Vitense (1958). 

In  the ionization zone where the absorp- 
tion coefficient increases rapidly and the 
adiabatic gradient decreases with increas- 
ing temperature, the temperature gradient 
v = d In T/d In P becomes very steep and 
the local adiabatic gradient v a d  falls below 
it. Consequently the gas will become un- 
stable against convection. A temperature 
gr,Ldient will be set up in such a way that 
the total flux will be carried partly by 
radiation and partly by convection. Rlore- 
over, when convective instability occurs, 
the turbulent elements do not move strictly 
adiabatically. The rising and falling tur- 
bulent elements and their surroundings 
exchange heat; the temperatures of the 
elements differ from their surrounding 
material. If V' ( = d  In T'/d In P) shows the 
logarithmic temperature gradient of a 
moving turbulent element, then the main 
equations for the convective theory can 
be summarized as follows: 
When the instability criterion 

. 

v a d  v 
is satisfied, we have 

Frad + Fcm = Ftota l  = L/hR2. (6) 
The radiative flux is given by 

(7) 

The convective flux is given by 

Fcm, = ~ppTfi(l/2H)(V - V'). (8) 
Here, cp is the specific heat per gram at 

constant pressure, V is the mean velocity of 
the rising or falling turbulent elemen%, 
H = @ T / P p g  is the pressure scale height, 
and 1 is the mixing length, a distance 
which a moving element travels before dis- 
appearing into the surroundings. For most 
of this work we have assumed 1 = H. Also 
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g is the gravitational acceleration and p is 
the ratio of the gas pressure to total pres- 
sure. The mean velocity is 

(9) 

f 4 [4(1 + 3 )  P 

z, = (1/2) d @ m ( v  - v’)l’z. 

Here C takes care of the cliange of the 
degree of ionization of mutter with tem- 
perature and density changes and can be 
expressed by 

4 

The temperature of a moving element is 
given by a relation which represents the 

element to  its radiation during its lifetime. 
ratin of the excess energy cnntent c!f the 

v’ - v -- 
V a d  - 

The adiabatic temperature gradient for a 
material which is undergoing dissociation 
or ionization can be obtained from the 
entropy condition. The total internal 
energy of the volume V which contains 
matter and radiation is the sum of the 
kinetic and potential energies of the parti- 
cles and the radiation energy of the 
volume : 

U = [$(l + 2)kT + Zvir]i~i]N + 
For an adiabatic change, 

dU + PdV = 0. 

The above two equations, together with 
equation of state and the Saha equation 
for the ionization, make i t  possible to give 
a general expression for the adiabatic 
gradient in terms of known quantities 

where f l  = +Z’ and fZ = 2 5  + Z’ - 
Zv,qz2. They are taken as equal to 1 + Z  
and 1 +Z-  (8v,q,/p0) in the case of dis- 
sociation of hydrogen molecules under con- 
sideration. In  this expression the variation 
with temperature of the molecular hydro- 
gen partition fmction was neglected be- 
cause of the small abundances of this 
molecule present in any of the models cal- 
culated in this gaper. Shnn!d this ~ s u z p -  
tion not be warranted, then one should use 
the thermodynamic functions given by 
Vardya (1961). The specific heat cP, which 
is the partial derivative of U with respect 
to T ,  may be written as 

C, = (R/po)Fz.  

The Eqs. (61, ( 7 ) ,  (81, ( 9 ) ,  and (10) arc 
the main equations which will give us the 
real temperature-pressure relation in the 
layers where convection sets in. Thew five 
equations determine the actual logarithmic 
temperature gradient V, the logarithmic 
temperature gradient of the turbulent ele- 
ment v’. the velocity of the moving tur- 
bulent elements, the amount of flux carried 
by radiation Frnd, and that carried by 
convection F,,,,,, . satisfying the condition 
that FTCd + F,,,,, is equal to total flux. The 
convection will set in when v > v a d .  Since 
the radiative temperature gradient is the 
largest value that the actual temperature 
gradient can take, then v must be between 
Vrad and Vad. It is close to  Vrad if the greater 
part of the energy is carried by radiation 
and i t  has a value slightly above vad if 
most of the energy is carried by convection. 
On the other hand, if during the convec- 
tion, the moving elements lost no energy, 
then the temperature gradient of the tur- 
bulent elements V’ would be equal to vas. 
The moving elements never possess a tem- 
perature gradient steeper than the sur- 
rounding temperature gradient, since a 
rising element radiates energy to  its neigh- 
borhood. Consequently the four tempera - 
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ture gradients should always maintain the 
relative order 

Viad > v > v’ > Vad. 
We use the following procedure ill order 

to obtain the actual temperature gradient. 
Once T and P are known a t  a point, a 
subroutine calculates the degree of ioniza- 
tion, the mean molecular weight, the adia- 
batic gradient, the specific heat c p ,  and C .  
The Eqs. ( 6 ) ,  (71, (8 ) ,  ( 9 ) ,  and (10) can 
be written in the following form: 

zcv + &(v - v ’ ) ~ ’ ~  = F (6’) 

F,d = WV (7’) 
Fcon, = Q(V - (8’) 

(9’) 

(10’) 

B = q1(v - v’)l’2 

(0’ - Vad) = ( 9 / 4 ) ( w / Q ) ( ~  - V’)”’ 

where 

These equations can be combined to give a 
cubic equation 

(11) 
in terms of A v ,  where AV = (G - V’)lI2. 

If the radiative gradient becomes larger 
than the adiabatic gradient, the cubic 
equation is solved for A v  by Newton’s 
method. Then Eqs. (9’) and (10’) give US 
v and v’. FiUd and F,,,, are obtained with 
Eq. (7’) and (8’). lye can check whether 
the condition ( 6 )  is satisfied. If i t  is not 
satisfactory, the values can be improved 
by iteration. 

At great depths, the elements move al- 
most adiabatically, and the actual tem- 
perature gradient approaches the adiabatic 
gradient. Convection is so efficient in 
transporting energy that  we may use the 
convective temperature gradient as defined 

dT r - 1 dP 
dm r dm 

- 

- 

provided that  the actual values of r cor- 
responding to  the physical conditions exist- 
ing at every point in the zone are taken 
into account. 

ATMOSPHERIC CALCULATIONS 
For an assumed mass, radius, and ex- 

pected luminosity of the configuration, the 
effective temperature of the star, 

L 
4*R% Teff = - 

is calculated. For the photospheric pres- 
sure : 

d P p h  - - _ -  
d7 x 

where g = G M / R L ,  x is the absorption co- 
efficient per gram of stellar material, and 
T is the optical depth. 

We start the calculations with an as- 
sumed photospheric density p!,],, and X ( p p h ,  
T , )  gives us tlie corresponding photospheric 
prewure a t  a chosen optical depth. Now 
the degree of ionization and dissociation 
allows us to define the mean molecular 
weight. From the equation of state: 

p = ( & / P ) P T  

a new p is determined. This proccdure is 
repeated until P,,, , I‘,,,,, T,, x ( p l 1 ~ , ,  T , ) ,  and 
T are adjusted a t  a selected optical depth. 
From the study of the radiative transfer in 
stellar atmospheres, it is found that  the 
effective temperature of the stars approxi- 
mately corresponds to  the temperature a t  
the optical depth T = 2/3. We therefore 
used T = 2/3 in the calculation of our stel- 
lar models. In  order to see the influence of 
different values of T, we repeated the cal- 
culation for some models using T = l and 
T = 0.5. Due to the present uncertainties 
in the opacity a t  low temperatures, no at- 
tempt has been made to  improve these 
crude atmospheric calculations. 

INTEGRATION PROCEDURE 

To get the final model for a star of fixed 
mass and radius, a computing program, 
using logarithmic variables, has been pre- 
pared for the 7090 computer which carries 
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out the integrations and fitting procedure 
entirely automatically. With a fixed mass, 
radius, and trial luminosity of the star, 
atmospheric conditions provide us the 
boundary values for inward integrations. 
The luminosity L and the contraction rate 
J are the eigenvalues for these inward 
integrations. The final model cannot be 
obtained unless we have the right com- 
bination of L and J values which suits the 
internal structure of the star. 

Integration starts from the surface using 
--- In P BS the independent wrizh!e. As 2 step 
size A In P = 0.1 is stored in the machine, 
but the interval is halved or doubled ac- 
cording to the size of the derivatives. When 
the radiative temperature gradient gets 
larger than the simultaneously calculated 
adiabatic gradient, the actual temperature 
gradient is obtained as explained above. 
When dM/dP is larger than a preassigned 
value, the program switches to the second 
set of equations in which the mass is used 
as an independent variable. Special care is 
taken in order to keep a uniform change in 
mass and pressure a t  the switchover point. 

Preliminary trial inward integrations are 
carried out until the solutions reach within 

about 1% of the mass a t  the center. Sta- 
bility of the integration is checked in terms 
of homology invariants 

d In A I .  u = -  d In L 
d l n r 7  w=- d In r 

which both should approach 3 near the 
center of tlie star. If the U value stay:: 
smaller tlian 3, the trial luminosity should 
be decreased; if i t  stays iarger than 3 as 
the center is approached the trial luniinos- 
ity should be increased. The systeniatic 

be a function of the trial eigenvalue of J .  
If W becomes smaller near the center, J 
shouid be increased; however, if i t  passes 
3, the value should be decreased. Figure 3 
schematically illustrates the character of 
these ( U ,  W )  curves as functions of the 
trial eigenvalues. The center sketch shows 
the behavior of tlie ( V ,  W )  curves with 
the right combination of eigenvalues L and 
J. The other figures illustrate the niisbe- 
havior of the curves with too large or too 
small combinations of the trial eigenvalues. 
The program autoiiiatically checks li and 
W values and gives better trial values ac- 
cording to the mass point where the mis- 

c h ~ ~ t ~ r  of the T? i i i r ~ e  is &ij fijiiiid i o  

+0.01 

Aln J 
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-0.01 0.00 +O.Ol 
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FIG. 3. Diagrams showing the behavior of the homologous variables U and It7 a.s a function of the 
assumed surface eigenvalues of the model, centered about the correct choice of these eigenvalues. 
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behavior starts and defines an upper and 
lower limit for each one as long as the 
other is behaving properly. The U value, 
which is the ratio of the local density to 
the mean density, needs special care in the 
ionization zones of hydrogen and helium. 
In these zones the local density might de- 
crease with increasing geometrical depth, 
and our criteria for checking the stability 
of integrations by means of U might mis- 
direct us;  care is taken to avoid such mis- 
direction. 

The program tries to adjust the L and J 
values until the integrations are carried 
out to within 1% of the central mass. The 
program then obtains the trial center val- 
ues for pressure P, and temperature T ,  by 
extrapolating from the values where the 
properly behaving inward integrations 
stop. The outward integration starts by 
series expansion a t  the mass &To = e-* M, 
where M is the total mass of the star, and 
is carried out up to the preassigned fitting 
point. The selection of right L and J values 
is very important since they affect the 
starting values of the outward integrations 
through the energy generation equation. If 
the trial eigenvalues of the integrations are 
far from the real conditions that  the star 
should have, the fitting procedure is never 
achieved. 

The fitting procedure is accomplished in 
the following manner: Two other inward 
integrations with small increments in L or 
J are performed, thus providing three in- 
ward integrations with the eigenvalues. 

L, J 

L 4- 6L, J 
L ,  J + 6J 

The comparison of these integrations a t  the 
preassigned fitting point gives the de- 
pendence of each dependent physical vari- 
ables on the eigenvalues: 

where Yi ( i  = 1, . . . , 4) are In L, In R, 
In P, and In T ,  respectively. 

A similar set of four outward integra- 
tions, from the center to the fitting point 

are performed, with the trial eigenvalues 

Pc + 6P,, T,, L,  J 
PC, Tc + 6Tc, L, J 
PC, To L+SL,  J 
PC, Tc, L,  J + 6J. 
The results are compared with the outward 
integration of the eigenvalues P,, T,, L, J, 
in order to obtain the eigenvalue depend- 
ence 

of the physical variables a t  the fitting 
point. 

The corrections AP,, AT,, AL, AJ to the 
trial eigenvalues of P,, T,, L,  and J ,  which 
will give us smaller differences at the fit- 
ting point, can be obtained by solving four 
simultaneous linear equations, 

where ADi (i = 1, . . . , 4) are the differ- 
ences a t  the fitting point between inward 
and outward integrations in physical 
variables. The procedure is repeated using 
be tkr  trial values, until the differences a t  
the fitting point become smaller than a 
desired value. 

RESULTS 
Twenty-seven models for the early con- 

tracting sun, each corresponding to a 
radius expressed as a multiple of the pres- 
ent solar radius, have been constructed. 
The results of the computations have been 
summarized in Table I1 for fully convec- 
tive models and in Table I11 for partially 
convective models. Each column shows, in 
turn, the radius in terms of solar radius, 
the luminosity in terms of solar luminosity, 
the effective temperature of the model, the 
contraction parameter, the central tem- 
perature of the model, the center and sur- 
face densities, and the ratio of the central 
density to  the mean density of the model. 
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TABLE I1 
CHARACTERISTICS OF FULLY CONVECTIVE MODELS 

7'. Tcentw pccntcr p.",/aCs 

R / R  0 L / L  0 ("I\)  J (OK) (Ern /cm3) (gm/cm') w/F 
- -- - 

3 
5 

10 
20 
25 
30 
50 
55 
60 
75 

100 
200 
400 
450 
500 
600 
750 

1000 

3.470 
8.790 

28.677 
88.910 

124.68 
165.30 
343.91 
414.50 
475. I 3  
651.82 
976.72 

2.55.5. 0 
7325.4 
8107.9 

10730 
16078 
27900 
62160 

4535 
4432 
4212 
3941 
3847 
3T68 
3505 
3502 
:34fi9 
3358 
3218 
2844 
2663 
2575 
2621 
2646 
2716 
2874 

2.107 2.923 x 10' 
2.080 1.779 X 106 
2.041 9.148 X lo6 
2.015 4.758 X lo5 

8.062 3.209 X 106 
2.607 1 .!)02 X lo5 
2.436 1.848 X lo5 
2 824 I ?< 106 
3.024 1.389 X IO6 
3.699 9.609 X lo4 
3.156 4.723 x E 4  

2.785 1.990 X lo4 
2.486 1.722 X 10' 
2.604 1.556 X 10' 
3.329 1.348 X lo4 
3.165 1.166 X lo4 
0.595 1.101 X lo4 

2.020 3.870 x 105 

3.721 x 10-l 
8.301 X 
1.228 x lo-* 
1.606 X 10-3 
8.794 X IO-' 
5.377 x 10-4 
1.102 x 10-4 
1.059 x 10-4 
?.I94 x 1n-s 
4.932 X 
1.872 X 
1,637 10-1 
1.341 X 10' 
6.905 X 
3.964 X 
1.448 X 
3.875 x 10-9 
1.027 X 10- 

I ,829 x 10-7 
1 . O ~ S  x 10-7 
6.197 X 10" 
3.638 x 10-8 
3.089 X 10" 
2.722 X 10-8 
2.048 X 
1.855 X 
1.792 x 19-8 
1.558 X 10" 
1.313 X 10" 

7.374 x 10-9 
8.464 X 10- 
6.444 X 10- 
4.798 X 10- 
2.997 X lo4 

0 E O E  x ". UJU 

1.445 x 10-9 

7.12 
7.35 
8.70 
9.10 
9.74 

10.3 
9.76 

12.48 
!! .!?2 
14.74 
13.27 
3.28 
6.08 
4.20 
2.84 
0.53 
0.27 
0.73 

TABLE I11 
CHARACTERISTICS OF PARTIALLY CONVECTIVE MODELS 

R / R  0 L/L 0 ("K) J (OK) (gm/cma) (gm/cm') ' C / O  

T. Tcmtsr pcsn1sr P.Y'/.W 

1 .oo 4.06 
1.20 3.73 
1.50 1.70 
1.60 1.09 
1.75 1.15 
1.85 1.32 
2.00 1.56 
2.25 1.98 
2.50 2.41 

8169 
7306 
5374 
4658 
4507 
4538 
4550 
455 1 
4548 

0.748 
0.779 
1.234 
2.096 
2.080 
2.088 
2.120 
2.110 
2.095 

2.270 X lo7 
1.888 X lo7 
9.622 X 10' 
5.220 X 10' 
4.574 x 10' 
4.453 x 106 
4.206 X 10' 
3.848 X 10' 
3.512 X 10' 

479 
263 
41.62 
4.644 
2.210 
1 ,796 
1.302 
0.884 
0.647 

1.293 X 
3.035 X 10% 
2.171 x 10-7 
3.456 x 10-7 
3.545 x 10-7 
3.228 x 10-7 
2.915 x 10-7 
2.533 x 10-7 
2.242 x 10-7 

339 
322 
99.5 
13.4 
8.39 
8.06 
7.39 
7.13 
7.16 

For all models above 2.5 solar radii, the 
convection is complete all the way to the 
center. When the sun contracts to a radius 
smaller than three solar radii, the radiative 
core starts to develop. ddditional charac- 
teristics for these models are indicated in 
Table IV;  the second and third columns 
give the temperature and density a t  the 
bottom of the convection zone, the fourth 
column the mass fraction inside the radia- 
tive core which increases with decreasing 
radius; and the fifth column is the fraction 
of the radius covered by the radiative core. 

I n  Table V, we show the gravitational 

TABLE I V  
SOME PHYSICAL CHARACTERISTICS AT 

BASE OF CONVECTION ZONES 
T 

R / R O  ("IC) P 

1.00 6.68 X lo4 2.66 X 
1.20 7.10 x 104 5.08 x 10-7 
1.50 1.46 X lo6 7.50 X 10-2 
1.60 2.58 X lo6 7.68 X 10-l 
1.75 3.00 X 10' 1.15 
1.85 3.29 X 10' 0.96 
2.00 3.31 X 10' 0.94 
2.25 3.35 X 10' 0.78 
2.50 3.38 X 10' 0.64 

( M ? / M )  ( r / R )  

1.00 1.00 
.99 .99 
.97 .70 
.60 .51 
.52 .44 
.40 .40 
.15 .33 
.OS .17 
.002 .05 

- 
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potential energy, the thcrmal energy, and 
ionization and dissociation energy, in ergs, 
for the indicated models. Meanwhile, the 
fractional mass in the form of molecules, 
neutral and ionized hydrogen, and neutral, 
singly, and doubly ionized helium are 
given. For the models R/R,  > 57, the 
absolute value of the gravitational poten- 
tial energy is less than the sum of the 
thermal, ionization, and dissociation ener- 
gies of the material. 

These models are in the region of insta- 

eron, 1 9 6 2 ~ ) .  Hence, they are only of for- 
mal interest. The collapse of the protosun 
continues untii the hydrogen is fully ion- 

hility .g.ir?.t g.T:itstinn..! cc!!qsc (Cnm- 

io5 

10' 

io3 
L - 
L o  

IOC 

10 

I 

0. I 

ized, 32% of helium is singly ionized, and 
66% of helium is doubly ionized. This cor- 
responds to a radius of 57 R,, at which 
point gravitational stability sets in. The 
further contraction of the protosun occurs 
on the Kelvin-Helmholtz time scale. 

I n  Fig. 4, the position of the models in 
the Hertzsprung-Kusscll diagram is shown. 
The threshold for stability corresponds to  
R = 57 R,. The luminosity of the protosun, 
corresponding to this radius, is about 450 
La. For all models above 2.5 solar radii, 

the center. When the protosun contracts to  
3 solar radii, its central temperature 
reaches about 2.9 X 10'; O K  and the 

t h ~  ~ ~ i i v ~ c t i ~ f i  is cuiiipleie iili tile way to  

I I I I I I 

EARLY SOLAR EVOLUTION ? 
\ 

4 
(No Nuclear Energy Sources.) 

f 
I 

; 
/ Threshold of 

Stab i I i t ye-: 103 Yea 

/-Io4 Year 

2 x lo6 Years 
Convective 

5 x 105 Years 

lo6 Years 

Main Sequence 
I I I I I I 

8 7 6 5 4 3 
EFFECTIVE TEMPERATURE ( to3 OK 

FIQ. 4. The Hertzsprung-Russell diagram for the models of the contracting sun calculated in this 
paper, with the mixing length equal to the pressure scale height. Above the indicated threshold of 
stability the models are of academic interest only since the thermal, ionization, and dissociation 
energies exceed the magnitude of the gravitational potential energy. The models are fully convec- 
tive above the line of evolution away from the threshold of stability as indicated a t  various points 
along the track. The main sequence and the present position of the sun are indicated by the dash- 
dot line on the lower left and by the circle. The sun probably approaches the main sequence ap- 
proximately along the dashed line shown beyond the third last calculated model. 
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luminosity is about 3.47 times solar 
luminosity. With further contraction a 
radiative core starts to devclop a t  the cen- 
ter. When the sun contracts to 2 solar 
radii, the radiative core coverb about 15% 
of the mass and 33% of the radius. The 
luminosity reaches its minimum value 
when the radius becomes about 1.7 times 
the solar radius. At that point thc radiative 
core extends to about 55% of the mass. 

With further contraction, the luminosity 
increases slightly, and when the radius has 
contracted to 1.5 solar radii, the radiative 
core covers about 97% of the mass and 
70% of the radius. At that  point, the cen- 
tral temperature reaches about 9.6 million 
degrees. The last part of the calculated 
track, which corresponds to the points 
1.2 R,  and 1 R,, has no physical signifi- 
cance since we did not consider the nuclear 
energy generation in our model calcula- 
tions. By the time the sun contracts to that 
extent the central temperature has become 
high enough to take into account the 
energy generation by nuclear sources. The 

convective model 20 IZ, corresponding to 
the optical depths T = 0.5, 2/3, and 1 are 
summarized in Table VI. An inspection of 
these results indicates that  the differences 
duc to this choice can be considered as  
insignificant. 

Prandtl's mixing-length theory in the 
form given by E. Vitense (1958) has been 
used in treating the convection in spite of 
some severe defects in representing the 
convective heat fluxes near the surface lay- 
ers (Spiegel, 1962; Simoda, 1961). The 
mixing length used here is the vertical dis- 
tance that a moving element travels before 
i t  dissolves. It is usually taken as a con- 
stant multiple of the pressure scale height. 
There are still great uncertainties about 
the appropriate choice of this constant. 
Therefore, i t  has been customary to choose 
this ratio as a disposable parameter. We 
constructcd most of cur mcdels by taking 
this parameter as unity. In  order to  see 
the influence of different values for the 
ratio of the mixing length to the pressure 
scale height, 01 = 1 / H ;  we constructed 

- 

TABLE VI 
MODELS WITH EFFECTIVE TEMPERATURE AT DIFFERENT OPTICAL DEPTHS 

R I R O  T T. P."rlocs L J T. P O  

2 0.5000 4528 2.507 X lo-' 5.792 X 2.118 4.203 X lo6 1.314 
2 0.6666 4550 2.915 X 5.!;03 X 2.120 4.206 X loE 1.303 
2 1.0000 4596 3.556 X 6.145 X 2.118 4.218 X lo6 1.303 

- - .  

20 0.5000 3926 3.120 X 1WS 3.272 X 2.020 4.760 X lo5 1.625 X 10-3 
20 0.6666 3941 3.638 X lo-* 3.323 X 10% 2.015 4.758 X lo5 1.606 X 10-3 
20 1.0008 3971 4.486 X lo-* 3.425 X 10% 2.022 4.754 X lo6 1.619 X 10-3 
-~ 

start of nuclear energy generation will 
change the route of the track and should 
bring the sun down into the initial main 
sequence, probably about as indicated by 
the dashed portion on the lower left of 
Fig. 4. 

I n  our calculations, we assumed that  the 
effective tcmperature of the star corre- 
sponds to  the actual temperature a t  an 
optical depth 2/3. It can be argued that  
this is not a good assumption. In  order to 
test the sensitivity of this choice, we re- 
constructed some of the models by taking 
this value as 0.5 and 1. The results for a 
partially conwctive model 2 R, and a fully 

models 2 R, and 20 R,, also using the 
values 0.5, 2, and 3 for N. The results are 
summarized in Table VII. Figures 5 and 6 
show the change of luminosity and effective 
temperature. The increase in N results in 
an increase in the luminosity of the star. 
The relative increase in luminosity is 
slightly greater in 20 R, which is a fully 
convective model. These results have spe- 
cial importance in the sense that  the 
luminosity of protosun might be higher 
than the calculated one, if for N a more 
realistic value turns out to be larger than 
one. 

With a larger ratio of the mixing length 

* 
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FIG. 5. The relation between luminosity and 
mixing length for a solar model with 20 times 
the present radius. 

I-.-I_ 
I 2 3  
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0 5  

FIG. 6.  The relation between luminosity and 
mixing length for a solar model with 2 times the 
present radius. 

to the pressure scale height causing an 
increase in luminosity, also there is an 
accompanying extension of the convection 
zone towards the center of the star. In  
accordance with this, the temperature a t  
the bottom of the convective zone increases, 
and reaches about 4.1 X lo6 OK, for the 
model 2 R,. The radiative core covers only 
1% of the mass with the value (Y = 3 while 
it is about 15% of the mass with a =  1. 
These results are shown in Fig. 7. 

Convection sets in a t  the optical depths 
of T = 3.19, 3.25, 2.05, and 1.94 for T = 0.5, 
1, 2, and 3,  respectively for 2 R,. 

In  the transition regions where the 
density and the specific heat are low, the 
superadiative gradient (v - V’) and con- 
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-Fraction of mass inside the radiative core 

4.5 

.3 :'I .2 

FIG. 7. Densities a t  the bottom of the outer 
convective zone in the solar model with twice 
the present radius, as a function of the assumed 
mixing length. 

vective velocity V show a sudden increase 
in order to carry the required amount of 
flux. In  Fig. 8 we have plotted the average 
convective velocity V versus log P for 

R -20 Ro g1 / / / k b N D  VELOCITY - g e l  \ 

Q ; 'T 

E 7 +  

> 6 ;  
I - I  

t l  3 5 c  
W I  

3~ 

p 2  

2 3 4 5 6 7 8 9 0 II 12 
LOG PRESSURE (dyneslcrn') 

FIG. 8. The average velocity of the turbulent 
elements in the outer convective zone for a solar 
model of 20 times the present radius, shown for 
three assumptions concerning the mixing length. 
Also shown are the sound velocities a t  various 
points of the transition layers in the different 
models. The peak in the velocity curve is not 
realistically determined because the peak struc- 
ture is narrow compared to the mixing length. 

0 'L 

20 R,. The increase in the ratio of mixing 
length to pressure scale height results in 
higher convective velocities ; the convective 
velocity approaches that of sound and . 
might initiate shock-wave phenomena if a 
large value of the ratio (Y should be the 
correct one. 

We have also investigated the effect of 
using the density scale height as a measure 
of the mixing length. The procedure here 
is somewhat complicated by the fact that  
the models so far described have a density 
inversion immediately below the transition 
region in the photosphere where convection 
begins. This arises from the effects of an 
increasing opacity with depth and the cor- 
responding steepening of the temperature 
gradient necessary to carry the radiative 
flux in the region before convection be- 
comes efficient. To  avoid these complica- 
tions we took as the mixing length in the 
transition zone the actual distance required 
for the density to increase by a factor e 
below the point where convection com- 
mences. At greater depths the local density 
scale height was used. 

With these changes the density inversion 
nearly disappeared. A model with radius 
2 R, had a luminosity corresponding to  a 
choice (Y = 1.4 for the pressure scale height. 
A model with radius 20 Ro had a luminos- 
ity corresponding to  a choice (Y = 1.8. These 
results are consistent with some calcula- 
tions for a solar model carried out by Nor- 
man Baker (private communication). 

The contraction time t for contraction 
between radii R1 and R z ,  can be found by 
the relation 

I 

This integration has been carried out 
graphically. The luminosity and radius 
versus time have been plotted in Fig. 9, 
and also indicated in Fig. 4. It can be seen 
that  the sun evolves very rapidly away 
from the threshold of stability. When i t  
ceases to become fully convective its age 
is about half a million years; the time re- 
quired to  contract from 57 R, to 1.7 RE,, 
the radius Corresponding about the mini- 
mum luminosity, is about one million years. 

* 

. 
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FIG. 9. The behavior of the luminosity and 
radius of the sun as a function of time beyond 
the tb:esh,h,=!d of stability. 

The sun reaches approximately its present 
position near the main sequence in about 
2 X lo6 years. 

These times are much shorter than the 
earlier estimates of the age of the sun a t  
the end of its stage of Helmholz-Kelvin 
contraction. 

In  the calculation of these results, no 
energy generation due to the deuterium 
burning has been included. Let us consider 
when the deuterium burning would occur 
as the primitive sun contracts. 

The energy generation rate for deuterium 
burning is given by 

XHXDP 37.2 
e = 4.3 x 1 0 2 8  - Tal3 exp (- p) 

erg/gm sec 
where xH and xo are the fractional hydro- 
gen and deuterium abundances by mass, 
and T, is the temperature in unit of 108 
OK. If the primitive sun had the terrestrial 
ratio of deuterium to hydrogen, this deu- 
terium would be destroyed by thermonu- 
clear reactions when the central tempera- 
ture reaches about, 800,000 OK. When the 
sun contracts t o  10 solar radii, the energy 
generation by deuterium burning is equal 
to 1.03 x erg/sec. At this radius 
its luminosity is 28 times its present value. 
The contraction would halt a t  this point 
while the deuterium is destroyed. Since the 
sun is fully convective, the material would 
be well mixed inside the sun and the de- 
struction of deuterium would go on 

throughout the sun. This deuterium burn- 
ing stage of the early solar evolution would 
add about 3 x lo" years to the contraction 
age indicated in Fig. 9. 

We should also give some consideration 
to the present abundance of lithium in the 
sun. This abundance is much smaller, rela- 
tive to that of similar elements such as 
sodium or potassium, than is found for the 
earth and meteorites. Thermonuclear reac- 
tions with hydrogen above 4,000,000 OK 
rapidly destroy lithium. Rut we are deter- 
A l L g  tile abundance or" iithium in its 
surface layers. In  order to find whether 
lithium in the surface layers should have 
been depleted by thermonuclear reactions, 
we must find the highest temperature which 
the convection zone attains a t  the bottom 
so that the material can be subjected to 
these temperatures by convective motion 

We can estimate how much lithium 
would have been destroyed during the con- 
traction phase of the sun. Lithium contains 
two stable isotopes, LiG and Li7. The reuc- 
tion rate for Li" i p ,  He'  reaction per 
nucleus per second is 

The similar reaction rate for Li' 
He4 is 

( p ,  a) 

If we assume that the mixing is suffi- 
ciently rapid to keep the material homoge- 
neous in the convective zone, then the 
relative number of lithium nuclei which 
have been destroyed in the convective zone 
can be obtained by integrating the reaction 
rates throughout the convection zone and 
dividing by the mass remaining inside 
the convective zone. For the fully convec- 
tive model the surface material is well 
mixed with the center material, but the 
central temperatures have not risen above 
the critical value for the lithium thernio- 
nuclear reactions. When the sun contracts 
to 3 Ro, the central temperature is high 
enough to consider the thermonuclear reac- 
tions with hydrogen. With further contrac- 
tion the temperature a t  the bottom of the 
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outer convective zone reaches the values 
listed in Table IV. These temperatures are 
sufficiently high to deplete the Li" by a 
substantial factor (3.241, but the depletion 
of Li; is iiisignificant (1.4%). In Fig. 10 is 
shown the rate of lithium burning versus 
time. 
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LITHIUM BURNING IN OUTER 
CONVECTION ZONE. 
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FIG. 10. The rate of lithium burning averaged 
throughout the outer convective zone for both 
isotopes of lithium, as a function of the evolu- 
tionary time of the solar models calculated with 
the mixing length assumed equal to the pressure 
scale height. The total depletion of the isotopes 
is obtained by integrating under these curves. 

In  Fig. 7, we showed the change of tem- 
perature a t  the bottom of the convective 
zone with different assumed values of the 
ratio of the mixing length to the pressure 
scale height. With a larger ratio of the 
mixing length to the pressure scale height 
the temperature a t  the bottom of the con- 
vective zone increases. Consequently the 
depletion of lithium would be more rapid. 
With (Y = 3 for the 2 Ro model, the outer 
convective zone reaches a temperature well 
over 4 x lo6 OK. At these high tempera- 
tures the depletion of Li7 would be appre- 
ciable (factor 2.2). If the primitive sun 

contains about the same amount of lithium, 
relative to sodium and potassium, as do 
the earth and the meteorites, then we could 
obtain about the observed amount of de- 
pletion of lithium in the surface layers of 
the sun by assuming a fairly large value 
for the ratio of mixing length of pressure 
scale height in constructing models of the 
contracting phases. 

Some of these results are quite similar 
to those independently obtained by R. 
Weymann and E. Moore (to be published). 
The principal difference is that we find a 
greater probability of lithium burning than 
they did, probably because our interior 
opacities are greater than the ones they 
used, and hence our outer convection zones 
are somewhat deeper. 

. 
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CONCLUSIONS 
These calculations confirm Hayashi's 

prediction that  the early contracting sun 
should be highly luminous and fully con- 
vective. We find that the sun contracts t o  
approximately its main sequence position 
in 2 million years, but this figure may be 
still further reduced owing to  the great 
uncertainties in the solar luminosity that  
we found associated with the theory of 
convection used. The maximum radius of 
the sun is 57 Ro; models with larger radii 
are unstable against gravitational collapse. 
If the terrestrial ratio of deuterium to 
hydrogen also existed in the early proto- 
sun, then deuterium burning adds 3 X lo5 
years to  the solar contraction time. We find 
that  the outer convection zone of the sun 
very probably became hot enough to cause 
a significant depletion of Li6, but the deple- 
tion of Li7 is highly uncertain and depends 
on the details of the convection theory. 
These conclusions have considerable rele- 
vance for theories of the origin of the solar 
system, since i t  appears that  planets form- 
ing in a solar nebula formcd with the sun 
must be subjected to  a high temperature 
environment. 
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